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1 Question 1
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Figure 1: Uniform flexible beam clamped at both ends and loaded with a uniformly distributed load wy.

A beam clamped at the both ends subjected to an uniformly distributed load wq over its entire span is shown

in Figure 1.

The bending moment M, (z,z) should be determined in order to solve the deflection of the beam. To do this,

we should look at the free body diagrams and find the reaction forces and moments.
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Figure 2: Shear force diagram.
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Figure 3: Bending moment diagram.

The shear force diagram and the bending moment diagram of the beam is given in Figures 2 and 3 respec-

tively.
Reaction forces:

wol wolL
Reaction moments and bending moment at the centre:
UJOL2 WOLQ [,«.)QL2
Mp = — d My = d My =—
B 12 o B o A 12

The bending moment M, at any distance 0 < x < L where L is the length of the beam as follows:

Mx:MB+ng+VB
wol?  wor?  wolz
12 2 2
wo 2 2
= E{6Lac—L — La?}

(1.2)

(1.3)
(1.4)

(1.5)



It should be noted that there is no horizontal movement in this particular problem. So:

A=0 (1.6)
To=x+A = To=1T (1.7

Non-linear Euler-Bernoulli differential equation:

[+ ()P = B |
By substituting Eq. 1.5 into Eq. 1.8:
y”EI wWo 2 2
If o/ < 1:
I/EI _ @ _ 2 _ 2
y'EI = {6Lx L? — Lx } (1.10)
'ET = 3La* — 1.11
Y 12 { }+ (1.11)
BEI =20 La% — [222/2 — 74 Ci+C 1.12
yEL =15 / 3 +C01+ 02 (1.12)
2
wWox 2
= L— 1.1
(- a) (113)
Yo =0 = C1 +C2 =0 (1.14)
Yl]pep =0 = C1=0 (1.15)
Otherwise:
y”EI wo 2 2
Let’sy’ =pand ¢y’ = p’:
p'EI 2 dpEI wo 9 9
Let’s p = tan g and dp = sec? 4dé:
29de
/L?)/z = 2 {6Lz— L? - La*} (1.18)
[1 + sinzz]
/cos0d9 =0 {6Lz — L* — La®} (1.19)
12 '
L 3
sinf = % {3Lm2 — L% — ;} +Cy (1.20)



p'EI wo 9 9 La3
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Analytical solution:

w o UJQL4
Ole=% = 384F7

Using nonlinear theory!:

X

N(x) = Nacosf + Qasinf —wpsinf | dx

x

Q(x) =Nasinf — Qasinf +wpcosf [ da

o— >

WOX2

M(x) = —Qax+ Npav + 5

+ My

where N is the normal force, @) is the shear force and M is the bending moment.

At the middle of the beam, § = 0

N(0) = Ny = Ng

1See Fertis
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2 Question 2

The compatibility equations (Saint-Venant’s compatibility equations) for the engineering strain ¢;; is given by:

€ijkl + Eklij — €kjil — €ilkj = 0; (4,7,k,1) =1,2,3 (2.1)

In expanded form:

825ij + 825kl . 825kj _ 625¢l -0 (2.2)
Ox,0x;  Ox;0x; Ox;0x;  Ox0x;

Non-trivial relations:

i # j and k # 1
1 2 and 1 2
2 3 and 2 3
3 1 and 2 1 (2.3)
1 2 and 1 3
2 3 and 2 1
3 1 and 3 2
€11,22 + €22,11 = 2€12,12 (2.4)
€22,33 + €33,22 = 2€2323 (2.5)
€33,11 + £11,33 = 2€31,31 (2.6)
€12,23 T €23,12 = €22,31 + €31,22 (2.7)
€23,31 T €31,23 = €33,12 1+ €12,33 (2.8)
€31,12 + €12,31 = €11,23 + €23,11 (2.9)
Equations of equilibrium:
oij; +pi =0 (2.10)
Constitutive Law:
05 = Cijklfkl (2.11
€ij = OijklOkl (2.12)
If the material is linear isotropic:
Oij = )\skkéij + 2/15@' (2.13)
1
Eij = E [(1 + I/)O’ij — I/O’kk(sij] (214)
By substituting Eq. 2.11 into Eq. 2.1:
((Sijmngm))kl + (Sklmngmn)ij = (Sikmnamn)jl + (Silmngmn)ik (215)
Plane stress strain field implies that stress is constant through thickness (ai = 0) and;
©3
031 = 013,
032 = 023
031 — 032 — 033 — 0 (2.16)
€31 — €32 = 0 (217)



Eq. 2.10 reduces to:

80’11 80’12

+p1 (z1,22) =0

8x1 8:62
(9(712 8022 o
81'1 81'2 +p2 (xla x2) - 0

Compatibility conditions for small strain plane stress:

2 2 2
(96;1_26612 +6€32:O
0x3 0x10zy O3

In index notation:

€ik,jl + €jl,ik — €jk,il — €il,jk = 0

i # 5 and k # I
1 2 and 1 2

Compatibility conditions for large strain:

RIOM _ p(OM _ p(O)M " F(L(?,)MF(C)L B I‘(c)Mrg)L —0

I1JK IK,J 1J,K IK LK

where Rg)léw is the Riemann—Christoffel tensor and,

QFES)K =Cyr1+Ckrg—Crik

T, = C*' Tk

From symmetry:

Cry=0Cyr
F{T(J = F?I

Crj=4617+2E;;

where 'K, (connection coefficients) is the Christoffel symbol of the second kind;

', =G;,-GX
f?j = 8i,j 'gk
f‘f] =81,J " gK

where G and g (metric tensors) represents co-variant derivatives:

and also satisfies that:

 oxeox”
= Ozt 0 TP

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.26)

(2.27)
(2.28)

(2.29)
(2.30)
(2.31)

(2.32)

(2.33)

(2.34)



Taking partial derivative of the metric tensor with respect to x*:

0G;; ?X> 9XxP 4 X 92X78 . 0X* 0XP 0gup (2.35)
ozt \ 0ziozk Oz ozt 0xioxk ) 90 T "oui Bad Buk '
and g.3 = gsa, material and spatial connection coefficients becomes:
1 (0G,  0Gjr  0Gy;
Tijk == = ok 2.
(@) = ( i Ko 9% ) (2:36)

_ 1 (99ay 993y _ 99as
(X)Tapy =3 (aXﬂ T o~ (2.37)

Since there is no curvature in the plane co-variants should be constant and connection coefficients should be
zero for the plane strain problem.
Equations of Green-Lagrange strain-displacement:

1 [ 0u; ou; Ouy Ou
Jo R i o Ola 2.38
> {aXZ- T ox, T ox, an] (2.38)
In index notation:
1
Eij = 5 (i + uji + ukiug,;) (2.39)

2

Eq. 2.23 satisfies plane-stress large deformation strain field compatibility relations. Using Green’s deforma-

tion tensor?:

QEKL ECKL(X,t)f(sKL (240)
oU  (OUN? [oV\? oW \?
oV [oUN? [ov\®P (oW \?
2Fyy =Cyy — 1= 287 + <(9Y) + <8Y> + <5Y> (2.42)
oW [oUN® [oV\® [ow\?
2Ezz—CZZ*1—267Z+ (82) + (E)Z) + ((‘)Z) (2.43)

ou oV ouou oVov owow

2Bxy =Cxv =gyt ox Y oxay Toxay T ox oy (2:44)
oV oW QU OU VOV  OW oW
vz =Cvzi=gz% 5y Yaovaz Tavez T oy o7 (245)
oW QU QU U 9V IV  OW oW
2ax =Cax =55 Yo7 Toxoz Toxoz T ox o7 (2.46)
Compatibility conditions for large deformation plane stress:
2 2 2
OExx o OExy | O Evy _ (2.47)

Y2 " xxdzy 0X?

2See Eringen



3 Question 3
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Figure 4: Viscoelastic material model.
Constitutive relations for each elastic and viscous elements within the model in Figure 4;
o= Fe
o ="

Relaxation and creep functions of the model are to be obtained.
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Figure 5: Viscoelastic material model with stresses and strains.

Observations:

€9 =€3+¢€4
09 = 03

o =01+ 02

Constitutive relations:

o
€1 = —
Ey
o
5 = —
73
. g1
Eg = —
m

—~ o~ o~
S Ot W
= I I



For e5:

Using parallel relations:

Also,

So,

Strains:

Total strain:

02 = 1N2€4 + Eae3

op) . &3k

=g+

12 72
g2

€3 = —
Es

. 02

Eyp = —

2

€3 =€3+¢éy

€9 =€3+¢€4

oo 92 02
? E, T2
0y) =0 — 01 —
o
o _ 9 o9 1+7
m B Ey
1 1 1 1 1
Ey 77) 1(E2 2 7]1)
)
€2 = i 1
M T
E=E&1+E&+¢E5
.7
1T 5
FE o
(s+ =)oz = —
12 12
_ o
S8€5 = —
R
_ o 09 o
6‘:7 [—
Ey n2(3+%) 513

(3.10)

(3.11)
(3.12)

(3.13)

(3.16)

—~

3.17)
3.18)

—~

(3.19)

(3.20)

(3.21)
(3.22)

(3.23)

(3.24)

(3.25)

(3.26)



4 Question 4
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Figure 6: Circular plate with simply supported circumference.

_ qR*
© 64D

wo(r) {(T>4+a2 [4—50%+4 (24 a?) log o]

R
2

+2liv [1 - (;)1 [4—(1-v)a? —4(1+v)loga]} (4.1)

Kirchhoff plate theory yields the solution in Eq. 4.1 for 0 < » < aR is to be shown.
Let’s set @ = 1 and obtain the first part of the problem as shown in 7:

q0

7 7
Figure 7: Circular plate with simply supported circumference under axisymmetric load gg along 0 < r < R.
For axisymmetric bending and constant material and geometric properties, the equations of equilibrium and

stress resultant-displacement relations of the Classical (Kirchhoff) Plate Theory based on the polar coordinate
system (r,0) are summarized below®.

d®w  vdw
M,=-D|—% +—-—— 4.2
" ( dr2 ~ rdr ) (42)
1dw d?w
M;=-D|(-— — 4.
K (r VA ) (43)
d (d*w 1dw d [1d dw
— D (=4 22— _p— | 2= [ == 4.4
@ dr(er +rdr> dr {rdr (Tdr>} (44)
The differential equation of the deflected surface of the circular plate:
d? 1d dPw  1ldw q
4, =24 22 halied kel R 3 4.
Vrw (dr2 +rdr> (dr2 +rdr> D (45)
dw 2dw 1w ldw g (4.6)
drd  rdr3  r2dr2  p3dr D '

Tro — O:

3See Wang, Reddy, and Lee; Ventsel, Krauthammer, and Carrera,



(4.7)

Eq. 4.6 reduces to:

IO

Let’s w be the solution of this differential equation than:

w = wp, + wp (4.9)

where wj, is the homogeneous solution, w),, is the particular solution.
The complementary homogeneous solution of the Eq. 4.8 is given by:

wp = Cl Inr + 027”2 Inr + 037”2 + C4 (410)

Particular solution, wy,, is obtained by integration of Eq. 4.8:

wy = / % / r / % / rpg)drdrdrdr (4.11)

Ifa=1:
4
qo”
= — 4.12
P = 64D (4.12)
So the general solution is:
QOT4
w=C4 lnr+C’2r21nr+C'3r2+C4+64—D (4.13)

Now, lets consider the problem in Figure 6. This problem can be solved using superposition on two different
axisymmetric solution for circular plates. The first one is a solid plate with simply supported edge loaded by a
line load q around a circle of radius ¢, as shown in Fig. 8.

To further simplify the solution, let’s investigate this plate in two sections. The first one is an annular plate
over the region b < r < which simply supported on the outer edge and have a line force on the inner edge. The
second one is a plate with a line force in the outer edges.

® l" ® lq@

%/ | c %/
/I

v
= =%
v

Figure 8: Circular plate with simply supported circumference under line load ¢ along the radius c.

Governing equations in each case:

10
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Figure 9: Contact region of plates 1 and 2.
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Figure 10: Simply supported plate under a line load uniformly distributed along the inner edge c.

Viw, = 0; Viwy, =0 (4.14)

General solution for the inner plate (1):

wy =M+ o (4.15)

General solution for the annular plate (2):

Wy = 01(2) Inr+ 02(2)7“2 Inr+ 0352)7“2 + C’ZEQ) (4.16)

Continuity conditions at the contact of the two plate segments:

w1,y = wal,—, (4.17)
dw1 d’wg
— = — (4.18)
dr |,_, dr |,_,
M| = M| (4.19)
p=Q" Q¥ (4.20)
Since inner plate is in pure bending:
p=—Q? . (4.21)

11



Boundary conditions at r = R

M, = 0|7‘:R (4.22)
Qr = — p|r:R (423)

Solution for the annular plate (¢ < r < R) under a line load uniformly distributed along the inner edge:

qR%c r2 3+ c? c
w = 1-—= — In —
4D R2) |[21+9) R?2-¢c*2 R

4.24
L 2 149 e, o
R2Z R R2-¢21-9Y R R
Solution for the inner plate (0 < r < ¢):
b
w = &fTD [(a2 — b2) (a2 + 7"2) — 242 (b2 + r2) In %} (4.25)

12



5 Question 5
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Figure 11: Crack subjected to splitting forces P on the crack surface within an infinite plate

Airy stress function:

__ Pa P a (5.1)
722 —a2 wz\V 22 —a?
where z is a complex number (z = x1 + iz2) and P is a load per unit thickness.
Assumption 1 - Shear forces are absent.
Boundary conditions:
092 =0 at |z1] <a,z1#0and 22 =0 (5.2)
/a o99dr; = —P  at 2o =0Tand 29 =0" (5.3)
—a

012=0 at|z;]<aand 29 =0

011,022,012 — 0 at x% + x% — 00

It can be shown that the Westergaard function for this problem?:
Using the Westergaard functions, the following expression for the complex stress intensity factor at the tip z = a
can be obtained:

K =2 lim {Vz —a(Zr —iZ11)} (5.6)

P 2 _ K2
K —iK;p = 27 lim { P @ —b } (5.7)
Vs

z—a z—b)V 22 —a?

P a+b
T JmaVa—b

4See Sun and Jin
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The stress intensity factors at the two crack tips:

P a+b
vmaV a—-1b’

P a—>b
T JmaV a+b’

K=

14
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