Erdem Caliskan HW3

12.2 A two-dimensional plane strain finite element analysis is performed on a through crack in
a wide plate (Figure 2.3). The remote stress is 100 MPa, and the half-crack length = 25
mm. The stress normal to the crack plane (o,,) at 6= 0 is determined at node points near
the crack tip and is tabulated in the given table. Estimate K; by means of the stress-matching
approach (Equation (12.14)) and compare your estimate to the exact solution for this
geometry. Is the mesh refinement sufficient to obtain an accurate solution in this case?
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0.005 11.0 0.080 3.50
0.010 8.07 0.100 3.24
0.020 6.00 0.150 283
0.040 454 0.200 2.58
0.060 3.80 0.250 241

FICURE 2.3 A through-thickness crack in an infinitely wide plate subjected to a remote tensile stress.

K_exact = 100*sqrt(pi*25)
K_exact = 886.2269

r 25%[0.25 0.20 0.15 0.10 0.08 0.06 0.04 0.02 0.01 0.005];
s_Vyy 100*%[2.41 2.58 2.83 3.24 3.50 3.89 4.54 6.00 8.07 11 1;
interpl(r,s_yy.*sqrt(2*pi.*r),0, 'linear’, 'extrap');
fprintf(1, 'K I = %.2f"',ans);

K_I = 938.27

figure

hold on

plot(r,s_yy)
plot(r,K_exact./sqrt(2*pi.*r))
legend('FEM stress', 'Exact stress')
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Refining the near the crack-tip would improve the solution. One can also use singular elements to get
more accurate results.

12.3 Displacements at nodes along the upper crack face (u, at = 1) in the previous problem
are tabulated in the given table. The elastic constants are as follows: E = 208,000 MPa
and v =0.3. Estimate K; by means of the (plane strain) displacement-matching approach
(Equation (12.15a)) and compare your estimate to the exact solution for this geometry.
Is the mesh refinement sufficient to obtain an accurate solution in this case?

ro u, B iy
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0.005 9.99 X 1075 0.080 302 X 1074
0.010 1.41 X 107 0.100 436 X 1074
0.020 1.99 X 107 0.150 527 X 10~
0.040 280X 1074 0.200 6.00 X 1074
0.060 341 X 10 0.250 6.61 X 107
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nu = 0.3;

r = 25%[0.25 0.20 0.15 0.10 0.08 0.06 0.04 0.02 0.01 0.005];
uy =1e-4*25*[6.61 6.00 5.27 4.36 3.92 3.41 2.80 1.99 1.41 0.999];
interpl(r,E.*u_y/4/(1-nu”2).*sqrt(2*pi./r),0, 'linear’, 'extrap');
fprintf(1, 'K I = %.2f"',ans)

K_I = 1013.82

Mesh refiniment would increase the accuracy. Ideally, displacement field can get very close since it has
the same form with the exact solution.

3. In figure below, a crack with initial angle of 45° is under uniaxial far field loading oy, in an
sufficiently large domain (e.g., infinite domain SIF formula can be used).
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e Using maximum circumferential tensile stress obtain the angle @ (angle relative to original
crack direction not the horizontal = axis) at which the crack would propagate. Hint: Refer
to Saoma ll()l(?:ip_}lg(‘:-i 160-161.

e For a given fracture toughness K. we can express the maximum traction &y,x for which the
crack would nul propagate using maximum circumferential tensile stress criteria. Express
Tmax = m.(q\,jb for a nondimensional value ancrs.

e Compare 6y you obtained with figure 10.4 in Saouma notes (p. 165/446) for the problem
in figure 3 (K; = Ky). How is this 8y compared with fy obtained from maximum energy
release rate and minimum strain energy density criteria shown in the same figure?

e Referring to figure 10.5 in Saoma notes (p.165/446) compare the traction am that would
initiate crack propagation in terms of nondimensional parameter a = Jﬁ-ﬂﬂhawd on maxi-
mum energy release rate (aygerr) and minimum strain energy density (aasep). Again, limit
your discussion to the problem in figure 3 (K; = Ky). Which one is the most conservative
and which one is the lease conservative? Note that numerical values of all three o coefficients
are needed (use the figure to obtain K;/K;, and by expressing K in terms of dpyax+/a find
the value of a).

(60 Points)

oy reaches maximum when 7,4 =0



Pure mode I loading:

K a il
or = ;;r cos 3 (l + sin® 5) (6.59-a)
i = j%;amg(l—ﬁﬁg) (6.59-b)
T = \/[;% sin 2 cos® g (6.59-c)
Pure mode II loading:
I 5.6 3. 30
or = \/% (——: sin 3 i p 1 sin 7) (6.60-a)
Ky 3.8 3. 38
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cos% [K7sin 6o+ Kn(3cosbp— 1)] =0

clear all

syms K I K II 'positive'
syms theta 0

egn = cos(theta_0/2)*(K_I*sin(theta @) + K _II*(3*cos(theta 0)-1))
eqn =

cos <%> (K1t (3 cos(@o) — 1) + K; sin(6o))

vars = theta 0;

assume(theta 0 ~= pi);

sltn= solve(egn,vars, "Real",true, "ReturnConditions”,true,"IgnoreAnalyticConstraints"”,true);
sltn.theta ©

ans =
5 K}r—\/K]z-I-SKH2
t
atan 4KH
5 K[+\/K12+8KH2
t
atan 4KH

Comax \/27a = Kic = cos% Ki COSQ% - %KH sin Oy

K Kic

- _ Kie 1
O09max = AMCTS \/g \/ﬂ \/5

C_

assumeAlso(K I == K _II)



simplifiedExpr = simplify(sltn.theta_0,"Steps",1600);
vpa((subs(simplifiedExpr,sltn.parameters,0)*180/pi),5)

ans =

—53.13
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We found ¢y = 53. 13 which match with the figure. Minimum strain energy density yields a higher angle
while the maximum energy release rate yields lower. Maximum circumferential tensile stress method
gives us a in-between angle value.
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Maximum circumferential tensile stress: 0.56 :: Least conservative

Minimum strain energy density: 0.61



Maximum energy release rate: 0.70 :: Most conservative

4. A crack growth at a rate (%)1 = 8.84 x 10 Tﬁ when the stress intensity factor is (AK ), =

50 MPa,/m and at a rate ((‘11—‘\')1 = 4.13 X l()_"”% when (AK), = 150 MPa,/m. Determine the
parameters C' and m in Paris equation. (60 Points)

d

L = cAK”
dN
syms m C

egns = [50”m*C == 8.84*1e-7, 150"m*C == 4.13*1e-5];
vars = [m C];

[m, C] = solve(eqgns,vars);

m = vpa(solm,4)

m = 3,499
C = vpa(solC,4)

C = 1.004e-12



