
ME 524 Midterm - Erdem Caliskan

Question 1
1. (90 Points). A cylindrical pressure vessel with closed ends has a radius R = 1 m and thickness t = 40 mm and 
is subjected to internal pressure p. The vessel must be designed safely against failure by yielding (according 
to the von Mises yield criterion) and fracture. The vessel is made of steel with yield stress σy = 860 MPa and 
fracture toughness KIc = 100 MPa√ m.

clear all
R = 1      ;    % m
T = 40*1e-3;    % m
Sigma_ys = 860; % MPa
KIc      = 100; % MPa*sqrt(m)

(a) For von Mises yield stress, yielding occurs when,  

where σ1, σ2, σ3 are principal stresses. By using the values of , , and  (exterior surface of the 
vessel, producing largest ), obtain  the maximum allowable p from plastic yielding perspective.

syms p r t sigma_ys
sigma_tt = p*r/t; sigma_zz = p*r/(2*t);
sigma_v = sqrt(((sigma_tt-sigma_zz)^2+(sigma_tt)^2+(sigma_tt)^2)/2)

sigma_v = 

p = isolate(sigma_v == sigma_ys,p)

p = 

P = subs(p,[sigma_ys t r],[Sigma_ys T R]);
vpa(P,4) % MPa

ans = 

(b) What direction of the crack between axial to circumferential direction experiences the highest stress intensity 
factor?
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A crack oriented with the axial direction experiences the highest stress intensity factor since the hoop 
stress is two times larger than the longitudinal stress.

c) Plot the maximum permissible pressure  versus crack length  considering both plastic yielding and 
fracture. Employ LEFM model for fracture analysis. To simplify the problem, consider the crack in the worst 
direction for fracture for both fracture and plastic yielding consideration. The crack is through thickness. Finally, 
the (axial) length of the cylinder is assumed to be much larger than crack length. So, based on the information 
provided you may not need to decrease plastic yielding untimate stress based on the reduction of remaining 
area.

P_c_plastic = double(solve(P))

P_c_plastic = 32.4326

a = linspace(0.1,50,1000)*1e-3;

P_c_plastic = P_c_plastic*ones(size(a));
P_c_lefm = KIc*T./(R*sqrt(pi*a));

for i = 1:length(a)
    if P_c_lefm(i) >= P_c_plastic
        P_c_lefm(i) = nan;
        a_cr = a(i);
    else
        P_c_plastic(i) = nan;
    end
end
figure('Position',[100 100 300 300])
hold on
plot(a*1e3,P_c_plastic)
plot(a*1e3,P_c_lefm)
ylim([0 75]); xlim([0 max(a)*1e3]); legend('Yield', 'LEFM'); 
xlabel('a [mm]'); ylabel('P_c [MPa]')
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(d) What is the crack length  corresponding to the transition between plastic and fracture failure 
mechanisms? 

% approximately
a_cr = a_cr*1e3 % mm

a_cr = 4.7953

% analytically
a_cr = (KIc*T/(R*P_c_plastic(1)))^2/pi*1e3 % mm

a_cr = 4.8418

 is the crack length corresponding to transition between plastic and fracture failure 
mechanisms.

(e) Calculate the maximum permissible crack length  for an operating pressure . 

a_c = (KIc*T/(R*12))^2/pi*1e3 % mm

a_c = 35.3678

(f) Calculate the failure pressure  for a minimum detectable crack length . 

 falls into LEFM dominated zone, thus
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p_c_10 = KIc*T./(R*sqrt(pi*0.1))

p_c_10 = 7.1365

(g) Calculate the failure pressure  for a minimum detectable crack length .

 falls into yield dominated zone, thus

p_c_1 = P_c_plastic(1)

p_c_1 = 32.4326

Question 2
2. (60 Points). For the notch problem shown in (1) we obtain the power of singularity for strain and strain 

 from the equation . Using the equation,

obtain the power of singularity of stress and strain  for modes I and II. To ensure that internal energy 

is finite around the crack tip . Also, for the singular response 

. So the acceptable range for the first term  for a singular response. For more information 

refer to the course presentation pages 135-138.

clear all
% syms lambda alpha x y
a = pi;
mode_1 = @(lambda) sin(2*lambda*a) + lambda*sin(2*a);
mode_2 = @(lambda) sin(2*lambda*a) - lambda*sin(2*a);
lambda_mode_1 =fzero(mode_1,0.5)
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lambda_mode_1 = 0.5000

lambda_mode_2 =fzero(mode_2,0.5)

lambda_mode_2 = 0.5000

- Find the stress and strain singularity power of mode I and II for  notch . You need to obtain the  

the minimum root of equations (2) for .

a = 3/4*pi;
mode_1 = @(lambda) sin(2*lambda*a) + lambda*sin(2*a);
mode_2 = @(lambda) sin(2*lambda*a) - lambda*sin(2*a);
lambda_mode_1 =fzero(mode_1,0.75)

lambda_mode_1 = 0.5445

lambda_mode_2 =fzero(mode_2,0.75)

lambda_mode_2 = 0.9085

x_min = -0.1;
x_max = 1.6;
figure ('Position',[100 100 250 250])
hold on
fplot(mode_1,[x_min x_max])
fplot(mode_2,[x_min x_max])
plot(x_min:0.1:x_max,(x_min:0.1:x_max)*0,'Color','black')
scatter(lambda_mode_1,0)
scatter(lambda_mode_2,0)
hold off

fprintf('Power of singularity for Mode 1 (lambda - 1) = %f',lambda_mode_1-1)

Power of singularity for Mode 1 (lambda - 1) = -0.455516
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fprintf('Power of singularity for Mode 2 (lambda - 1) = %f',lambda_mode_2-1)

Power of singularity for Mode 2 (lambda - 1) = -0.091471

- Noting that  discuss which mode will dominate the stress field near the crack tip. 

How is this compared to sharp crack, , where .

Power of singularities are  for Mode 1 and  for Mode 2. Thus, Mode 
1 will dominate the stress field around the crack tip.

- For your interest, no need to submit. Plot radius of singularity (when applicable) for modes I and II for  
to .

i = 1;
for a = pi/2:0.01:pi
    mode_1 = @(lambda) sin(2*lambda*a) + lambda*sin(2*a);
    mode_2 = @(lambda) sin(2*lambda*a) - lambda*sin(2*a);
    lambda_mode_1(i) = fzero(mode_1,0.75);
    lambda_mode_2(i) = fzero(mode_2,0.75);
    if lambda_mode_2(i) < 1e-6
        lambda_mode_2(i) = fzero(mode_2,1);
    end
    alpha(i) = a;
    i = i+1;
end

figure('Position',[100 100 300 300])
hold on
plot(alpha/pi,lambda_mode_1-1,'Color','red')
plot(alpha/pi,lambda_mode_2-1,'Color','blue')
hold off
xlim([0.5 1])
ylabel('Power of singularity')
xlabel('Notch angle')

6



Response gets more singular as the crack sharpens. Mode 2 response is not singlular for notch angles 
~<130 degrees. 

Question 3
3. (150 Points). Figure 2 shows a point force displacement system with crack length A, force , and beam 
width and height  and , respectively. The moment at the end of the crack due to the force is . 
To distinguish A from area of the crack surface we use  for the latter. We employ the following 
nondimensional parameters to facilitate the analysis of this problem,

where  is the yield stress.
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The purpose of this problem is plastic fracture mechanics analysis of this crack and comparison with LEFM. We 
adapt an elastic-perfectly plastic material behavior. From linear analysis we know that the maximum moment M 
that this beam can withstand without plastic deformation is when  at points C in the figure reach . If M 
further increases (through increasing P or crack length A) we will have plastic yielding in points C and the plastic 
region further penetrates inside the domain, until M at crack tip eventually reaches maximum possible moment 
that the section can withstand. The limit for initiation of plastic deformation and maximum value moments are, 

To determine the deflection  at the tip of the crack we employ relations between  and  as follows:

Note that  denote displacement and moment values along the beam while undecorated  and M 
denote their maximum values at the two end points of the crack. By locating the initiation position of plastic 
deformation in the beam and integrating (5) we obtain,

Equation (6) implies that when the applied moment  is small  corresponding to  the linear 

response holds between load and displacement. However, as m increases either through increasing load P or 
crack length A, the  relation is no longer linear.

8



Figure 3: Linear and nonlinear P − ∆ relations for the crack problem in figure 2. The dash line LEFM curves 
show that for small “loading” (m, P), the actual P − ∆ relation is linear

(a) Energy release rate  : To characterize plastic fracture response of this crack, we need to evaluate energy 
release rate . Since equation (6) is the  relation (in normalized form), we should be able to evaluate 

internal (strain) energy  or complimentary internal energy  

(note that the dummy parameters denoted by  are integrand integration variables). Subsequently, using one 

of the following equations  or  we can evaluate J. Note that 

J is taken as the energy release rate per unit area of crack advance  rather than crack length A.

Choosing the appropriate form of J in terms of U or  for this problem show that,
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(b) LEFM vs. PFM, Small Scale Yielding (SSY): After evaluating (7) we can show (no need to prove (7) yields 
(8)) that normalized energy release rate j is equal to,

This  relation and its realization as  curve for specific load samples p are shown in (4).

Figure 4: Energy release rate  as a function of normalized moment  and its realization for specific load 
values p. The LEFM solution does not take material yielding into account

i. What is the limiting m value, , below which LEFM solution can be used? For the geometry shown in 2, 
what is the transition load  for a given crack length A for which LEFM solution can be employed?

Limiting m value is  below which LEFM solution can be used. Corresponding transition load is 

ii. Briefly (less than 2-4 sentences) explain why for    plastic solution has a larger energy 
release rate?

Energy required to grow the crack is larger since the required energy to deform the region gets larger 
with the addition of plastic deformation.

iii. Since for LEFM  (plane stress), the "effective" normalized K for this problem is,
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Consider a loading . What is the stress intensity factor  corresponding to this load? 
What is the stress intensity factor  for  and same A? What is the relation between  and  ? 

Using figure 5 (a) explain why the superposition principle (e.g.,  of  is  ) does not hold here.

Figure 5: “Effective” stress intensity factor computed from J.

Using   

Since 

K_1 = sqrt(3)/2*0.5

K_1 = 0.4330

Therefore  and . The linear relationship does not hold for PFM since , 
corresponding to the transition between plastic and fracture failure mechanisms.

(c) Critical load  and displacement  correspond to load and displacement values that the crack can start 
propagating for a given fracture resistance . To determine , as done before, in R plot (e.g., 4(b)) we find the 
smallest load (for load control) or displacement (displacement control) value whose  curve intersect R curve for 

the initial crack length . If  is constant , for linear regime (  cf. (8), we obtain,
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Note that  depends on the initial crack length . Similarly, by plugging  in (6) we obtain , the critical 
displacement for crack propagation initiation.  is either directly applied in displacement control loading or is 
the displacement corresponding to  for load control setting. These values are summaries as follows,

for .

i. Evaluate  for the nonlinear range  in terms of  and .

Using the relationship between j and m:

Using (6)
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ii. Combining the solution from (11a) and your solution for , plot  in the form  

versus  for the entire range  to 1 . In addition to  from PFM, add the  that you would have 

obtained from LEFM analysis for the entire  using (11a). 

P_cr_lfm = @(j) 2*sqrt(j/3);
P_cr_pfm = @(j) 1-3/4*(1-j)^2;

figure('Position',[100 100 400 400])
hold on
fplot(P_cr_lfm,[0 1])
fplot(P_cr_pfm,[0 1])

Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your 
function to return an output with the same size and shape as the input arguments.

scatter(0.8,P_cr_lfm(0.8))
scatter(0.8,P_cr_pfm(0.8))
box on; grid on; legend('LEFM','PFM','Location','best')
ylabel('$ P_{cr} \frac{A_0}{B H^2 \sigma_y}$','Interpreter','latex')
xlabel('$j_c=\frac{J_c}{H \sigma_y^2 / E}$','Interpreter','latex')
hold off
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iii. For what ranges of  from LEFM and PFM analysis are different and in that range is PFM  smaller or 
larger than that of LEFM analysis. Explain (less than 2-3 sentences) why of PFM is smaller or larger than that of 
LEFM.

syms j
j_cr = 2*sqrt(j/3) == 1-3/4*(1-j)^2

j_cr = 

solve(j_cr)

ans = 

clear j

 for  is larger for LEFM and  for  is larger for PFM. Since , large  
corresponds to high fracture toughness, thus the response will be dominated by plastic mechanism. 
We can see that the normalized  is approacing to 1. However, for lower  values, material response is 
mostly elastic, thus, LEFM aproach is more suitable. For zero load case, the curve for PFM is not going 
to zero since the material is assumed perfectly plastic.
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Example stress-strain curves for perfectly elastic and perfectly plastic materials are given below.

x_min = 0;
x_max = 1;
figure('Position',[100 100 400 400])
hold on
plot(x_min:0.1:x_max,(0:0.1:x_max))
plot(x_min:0.1:x_max,(x_min:0.1:x_max)*0+0.8)
box on; grid on; legend('LEFM','PFM','Location','best')
ylabel('$\sigma$','Interpreter','latex')
xlabel('$\epsilon$','Interpreter','latex')
hold off

iv. Similarly, plot  in the form  versus  for  for both PFM and LEFM solutions 

using (11b) and your solution.

P_cr_lfm = @(j) sqrt(j/3);
P_cr_pfm = @(j) 20/(27*(1-3/4*(1-j)^2)^2)-(1-j-1/4*(1-j)^3)/(1-3/4*(1-j)^2)^2;

figure('Position',[100 100 400 400])
hold on
fplot(P_cr_lfm,[0 1])
fplot(P_cr_pfm,[0 1])

Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your 
function to return an output with the same size and shape as the input arguments.
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scatter(0.8,P_cr_lfm(0.8))
scatter(0.8,P_cr_pfm(0.8))
box on; grid on; legend('LEFM','PFM','Location','best')
ylabel('$\Delta \frac{H E}{A_0^2 \sigma_y}$','Interpreter','latex')
xlabel('$j_c=\frac{J_c}{H \sigma_y^2 / E}$','Interpreter','latex')
hold off

And the critical point:

syms j
j_cr = sqrt(j/3) == 20/(27*(1-3/4*(1-j)^2)^2)-(1-j-1/4*(1-j)^3)/(1-3/4*(1-j)^2)^2

j_cr = 

solve(j_cr)

ans = 

clear j

Similar to the load contol case, curves are intersecting at 
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v. Compare  from LEFM and PFM and comment on in which range they are different and briefly explain the 
cause of difference. You can refer to figure 6 for the explanation of your results.

Figure 6:  and  from LEFM and PFM analysis of the crack with initial length  for .

The differences between LEFM and PFM are distinct around critical values. LEFM can't represent the 
LSY for high fracture toughness, thus providing higher critical values. For P control, LEFM gives a 
higher critical load, while for control, PFM gives a higher value, as shown above. Discrapency will 
increase as  increases.
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