

Fracture Mechanics Term Project

Erdem Caliskan

Interaction of Inclusion and Crack by Determination of the Stress Intensity Factor

Tasks:

- 1. Compute J-integral for crack tip C.
- 2. Include figures of the partitioned area, mesh and the deformed shape around the crack region for distinct material case (E ratio of 10) with your final report.
- 3. Fill out table 1.

Modeling the problem

- We will use COMSOI for the computational project.
- After creating a blank project, 2D simulation is selected. Then we select Solid Mechanics

Select Physics	Solid Mechanics
Search AC/DC >))) Acoustics > (Chemical Species Transport) > [Electrochemistry] > Fluid Flow > (Mathematic Heat Transfer) > (Mathematic Heat Transfer) <t< td=""><td>The Solid Mechanics interface is intended for general structural analysis of 3D, 2D, or axisymmetric bodies. Typical results are displacements, stresses, and strains. Plane stress, plane strain, or generalized plane strain assumptions can be used in a 2D analysis. In 2D axisymmetry, it is possible to include circumferential displacements. The Acoustics Module, MEMS Module, and Structural Mechanics Module add several features, for example geometric nonlinearity and advanced boundary conditions such as contact, follower loads, and nonreflecting boundaries. With the Nonlinear Structural Materials Module or the Geomechanics Module, the interface is extended with, for example, material models for plasticity, hyperelasticity, creep, and concrete.</td></t<>	The Solid Mechanics interface is intended for general structural analysis of 3D, 2D, or axisymmetric bodies. Typical results are displacements, stresses, and strains. Plane stress, plane strain, or generalized plane strain assumptions can be used in a 2D analysis. In 2D axisymmetry, it is possible to include circumferential displacements. The Acoustics Module, MEMS Module, and Structural Mechanics Module add several features, for example geometric nonlinearity and advanced boundary conditions such as contact, follower loads, and nonreflecting boundaries. With the Nonlinear Structural Materials Module or the Geomechanics Module, the interface is extended with, for example, material models for plasticity, hyperelasticity, creep, and concrete.

Defining the parameters

• Main menu shown below

Model Builder	- #	 Parame 	eters		
$ \ \ \ \ \ \ \ \ \ \ \ \ \$		Name	Expression	Value	Description
▲ 《 ME524_project.mph (root)		а	1[mm]	0.001 m	Half crack length
🔺 🌐 Global Definitions	Parameter definition menu	c	3[mm]	0.003 m	Crack center distance
Pi Parameters 1	►	E phi	10e3[MPa]	1E10 Pa	E of the matrix
Geometry Parts		E_ksi	10*E phi	1E11 Pa	E of the inclusion
🕨 📥 Part 1		nu 1	1/3	0.33333	Possion's ratio
(iii) Materials		sigma 0	1[MPa]	1E6 Pa	Far field load
A Component 1 (comp 1)		L	15[mm]	0.015 m	Domain size
Definitions	、				
Plate					
 Solid Mechanics (solid) Mesh 1 Study 1 Step 1: Stationary Results 	Part definition: Creating	a square	as infinite de	omain	
¥	A A Part 1		▼ Object Type		
efinitions (coordinate	Square 1 (sq 1)		Type: Solid		
tem etc. generated	View 2		iype. Solid		
(B) Materials		▼ Size			
tomatically)	Component 1 (comp 1)				
	Definitions		Side length: L		
Definitions Boundary System 1 (sys1)	—				
b XV View 1					

Geometric definitions

Material definitions

• Materials are defined using the parameters inputs we defined earlier

Defining crack

J-integral definition

🖌 🚍 Crack 1	
⊖ J-Integral 1	Point A
🥽 J-Integral 2	TOILLA
📛 J-Integral 3	Daint D
🖨 J-Integral 4	POINT

The reason for having two J-integrals, we have two different radius for the contour integral

For this case it is 0.5 of the crack size,

We also calculate for 0.9 crack size

(results were very similar, 0.5 results have been used)

Settings	- #	Graphic	S 🙃 🖪 💷		4676 (111) (111)
J-Integral		च च छ			••••••••••••••••••••••••••••••••••••••
Label: J-Integral 1	E	mr	n	_	
 Point Selection 		15			
9		14			
+ 10		13			
Override and Contribution		12			
Equation		11-			
 J-Integral 					
Integration path:		10			
Circular	•	9-			
Radius of contour integral:					
T solid.crack1.crackSize^0.5	m	8			
 Stress Intensity Factors 		7			
- Averaging region	All definitions are	6			
$K_{1,11} = \frac{1}{c-b} \int_{0}^{c} \tilde{K}_{1,11} d\xi$	All definitions are	Ŭ			
S. S./ b	defined by default,	5			
b 0.2*solid.crack1.crackSize	We only changed m	4		+	
Upper bound:	0.5 to 0.9 in the				
c 0.5*solid.crack1.crackSize		37			· ·
Integration	J-Integral 2 and 4	2		+	
		,			-

Solver configuration

▲ 👓 Study 1

🔁 Step 1: Stationary

▲ The Solver Configurations

▲ 📑 Solution 1 (sol1)

Compile Equations: Stationary

▲ UXW Dependent Variables 1

- UT.P Displacement field (comp1.u)
- 4 🔚 Stationary Solver 1
 - N Direct
 - Advanced
 - Fully Coupled 1

Generation Selected = Con	npute	
Label: Direct		
▼ General		
Solver:	MUMPS	
Memory allocation factor:	1.2	
Preordering algorithm:	Automatic	
 Row preordering Reuse preordering 		
Use pivoting:	On	
Pivot threshold:	0.01	
Block low rank factorization		
Block low rank factorization toler	ance: 1E-8	
Compression type:	Normal	
Out-of-core:	Automatic	
Memory fraction for out-of-core:	0.99	
In-core memory method:	Automatic	
Minimum in-core memory (MB):	512	
Used fraction of total memory:	0.8	
Internal memory usage factor:	3	

All parameters are default in this section.

Т

Results

Boundary Loads and cracks

J-integral at point C = 0.13571 J/m^2

Stress plot around crack

Far field v-M stress= 0.33 MPav-M stress at the angled crack= 26.7 Mpav-M stress at the vertical crack= 36.3 MPa

Stress plots

Matrix only

Matrix + Inclusion

Matrix only results

Crack tip	J-integral (J/m^2)	K_I (MPa/mm^1/2)	K_II (MPa/mm^1/2)
А	0.15826	42195	0
В	0.18492	45611	0
С	0.15904	42299	0.31425
D	0.18537	45667	-0.83114
E	0.1585	42227	0
F	0.185	45621	0

Matrix + Inclusion results

Crack tip	J-integral (J/m^2)	K_I (MPa/mm^1/2)	K_II (MPa/mm^1/2)
А	0.13491	38958	0
В	0.17265	44071	0
С	0.13571	39074	0.28458
D	0.17302	44118	-0.83295
E	0.13514	38991	0
F	0.17273	44082	0

Numerical error

Stiffer inclusion resulted lower stress intensity factors.