Mechanical Properties of Boron Nanotubes

Mechanical Properties of Boron Nanotubes

Caliskan, E., & Kirca, M. (2022). Tensile characteristics of boron nanotubes by using reactive molecular dynamics simulations. Computational Materials Science, 209, 111368.

Mechanical Properties of Boron Nanotubes

Complex numerical model

- Same potential in many different configurations: Long computation time
- Bond generation/breakage: Reactive Molecular Dynamics
 - ReaxFF (Aktulga vd., 2012)

Computational load

- Number of atoms ~700-20.000
- Development of a stable and highly accurate simulation workflow
- > 20 different types of structures
- Diameter, length, aspect ratio, strain rate, temperature

High-Performance Computing TRUBA

✓ UHeM

✓ Optimization of the calculation time

- ✓ Different compilers
- ✓ MPI / OpenMP
- ✓ Different architectures
- Single node, (Lammps: USER-REAXC, USER-OMP)

# MPI tasks x # OpenMP threads	Workflow 1: Thermalization	Workflow 2: Tension
56x1	3.091	1.966
28x2	2.733	1.719
TRUBA - Cascade Lake - Xeon 6258R 2.70GHz Intel oneAPI - icx	ns/day	
# MPI tasks x # OpenMP threads	Workflow 1: Thermalization	Workflow 2: Tension
# MPI tasks x # OpenMP threads 40x1	Workflow 1: Thermalization 2.056	Workflow 2: Tension 1.397
# MPI tasks x # OpenMP threads 40x1 20x2	Workflow 1: Thermalization 2.056 2.257	Workflow 2: Tension 1.397 1.808

Acknowledgements: The numerical calculations reported in this paper were performed at TRUBA and UHeM resources

Mechanical Properties of Boron Nanotubes

Caliskan, E., & Kirca, M. (2022). Tensile characteristics of boron nanotubes by using reactive molecular dynamics simulations. Computational Materials Science, 209, 111368.